Review of the California Ambient Air Quality Standard for Nitrogen Dioxide

February 22, 2007

Board Hearing

Sacramento, California

Air Resources Board

California Environmental Protection Agency

Overview

- Criteria for standard setting
- Process for standard setting
- Sources and levels of NO₂
- Health effects of NO₂
- Basis for the standard recommendations

Criteria for Standard Setting

Elements of an Ambient Air Quality Standard

- Air Quality Standard: legal definition of clean air
- Standards have:
 - Pollutant definition
 - Concentration
 - Averaging time
 - Monitoring method
 - Form of the standard
- Based solely on health & welfare

Standard Setting Does Not Include

- Attainment designation plans
- Feasibility of controls
- Cost of controls
- Implementation of controls
- Separate regulatory process to address control issues

Why Did We Review the NO₂ Standard?

- Protect public health
- Comply with State law
- Address requirements of Children's Environmental Health Protection Act (SB25, Escutia, 1999)
- Priority for review based on Children's Environmental Health Protection Act evaluation

Why Are We Concerned about NO₂?

- Current standard not adequate to protect public health, including infants and children
- Adverse health effects related to NO₂
- Children, asthmatics most vulnerable
- NO₂ commonly found pollutant in outdoor air
- Higher concentrations reported near roadways

Staff Recommendations for the NO₂ Standard

- Reduce level of current 1-hr standard from 0.25 ppm to <u>0.18 ppm</u>, not to be exceeded
- Establish a new annual average standard of 0.030 ppm, not to be exceeded
- Retain current monitoring method (gas phase chemiluminescence)

NO₂ Standards (ppm)

	One Hour	Annual
California (current)	0.25	
US EPA		0.053
California (proposed)	0.18	0.030
WHO Guidelines	0.106	0.021

Process for Standard Setting

What Are the Regulatory Steps in a Standard Review?

Air Quality Advisory Committee (AQAC) Review

- Peer review required
- Appointed by University of California President
- Purpose of AQAC review:
 - Assess adequacy of scientific basis for proposed standards
 - Assess adequacy of proposed standards to protect public health

Findings of the AQAC Review

- Scientific conclusions and findings are consistent with the available data
- Staff recommendations are scientifically sound, and justified
- Suggested clarifications and discussion, additional references, and additional information in some sections of the report
- Staff made revisions based on AQAC review

Staff Findings

- Sources and Levels of NO₂
- Health Effects
- Basis for recommendations

Sources of NO₂

- Product of high temperature combustion
 - Power plants, motor vehicles
 - NO_X (NO + NO₂) emitted from sources
- Product of atmospheric processes

$$NO + O_3 \longrightarrow NO_2$$

- Indoor pollutant
 - Gas appliances, unvented heaters

Oxides of Nitrogen (NOx) Emissions Trends Statewide Annual Average (tons/day)

South Coast Air Quality Trends One-hour NO₂ (ppm)

South Coast Air Quality Trends Annual Average NO₂ (ppm)

Near Roadway Exposures

- Possible higher concentrations of NO₂ near roadways
- Some groups may be disproportionately exposed
 - Low income living near freeways
 - Children attending schools near roads
- Need to evaluate distribution of NO₂ monitoring sites
- Exposure characterization, not a health issue

Health Effects of NO₂

Evidence on the Health Effects of NO₂ Provided from Different Types of Studies

- Controlled human exposure
- Animal toxicology
- Epidemiology

Controlled Human Exposure Studies

- Exposures of human volunteers in a laboratory setting
- Responses studied: respiratory symptoms, lung function, inflammation (lung or blood), cardiovascular effects
- Typical subjects: healthy adults or mild asthmatics

Controlled Human Exposure Studies (con't)

- Advantages
 - Precise measures of exposure and response
- Limitations
 - Few studies on more vulnerable populations
 - Small sample size and studied doses
 - Few studies of pollutant mixtures
 - Cannot predict effects of chronic exposures

Controlled Human Studies of NO₂: Lowest Concentrations Showing Effects

- Healthy Subjects: no effects below 1 ppm
- Asthmatics
 - Enhanced response to inhaled allergen at 0.26 ppm (15-30 min)
 - Increased airway reactivity at 0.2 0.3 ppm (30 min-2 hr)
 - Potential to increase asthma symptoms and medication use

Controlled Human Studies (con't)

- Subjects with chronic obstructive lung disease
 - Decreased lung function at 0.3 ppm
- Limited data for children, elderly and those with cardiovascular disease
- Other considerations:
 - Variability in response among subjects
 - Limited data on longer exposure durations and effects of NO₂ with co-pollutants

Epidemiologic Studies of NO₂

- Examines effects of NO₂ in large human populations under real-world conditions
- Studies of acute effects
 - Time series ↑ NO₂ from day to day and ↑ hospitalizations or death
 - Panel studies of asthmatic children
- Studies of chronic effects
 - Longer term exposures (months to years) and risk of disease

Epidemiologic Studies

Advantages

- Evaluate exposures and responses of free-living populations over a wide range of individuals, behaviors, and subgroups, including susceptible individuals
- Examine both short and long-term exposures

Limitations

- Difficult to determine relevant exposure averaging time
- Need to account for other factors such as copollutants

Findings from Epi Studies

Acute exposure to NO₂ (24-hr to several days)

- ER visits and hospital admissions, especially for asthma, most consistent for both adults and children.
- Increased symptoms and decreased lung function in panel studies of asthmatics
- Increased mortality, cardiovascular-related hospital admissions, cardiac arrhythmias

Findings from Epi Studies

Chronic exposure to NO₂ (and traffic) (months to years)

- Asthma exacerbations
- Reduced lung function and lung growth
- Low birth weight
- Respiratory symptoms

Likely Effect Levels for NO₂ and Respiratory Disease

- Time series studies linking NO2 with emergency room visits and hospital admissions for asthma had long-term average of 0.03 - 0.05 ppm (24-hr avg)
- Several of these studies suggest an independent effect of NO₂
- At these concentrations, studies also link chronic exposures (months to years) to NO₂ with loss of lung function and asthma symptoms

Findings from Animal Studies

- Prolonged repeated exposure of young animals during lung development show changes in lung structure (<u>></u> 0.25 ppm)
- In animal models of allergic asthma, exposure to high concentrations of NO₂ (> 5 ppm) produce consistent increased markers of allergic inflammation
- Animal studies suggest oxidant damage consistent with human studies
- In terms of the amount of inhaled NO₂ reaching the deep lungs, rodents inhaling 1 ppm NO₂ is about equivalent to humans inhaling 0. 25 ppm NO₂

Basis for Recommendations

Basis for NO₂ 1-hour Standard of 0.18 ppm

- 1. Enhanced response to allergen in asthmatics at 0.26 ppm for 15-30 min
- 2. Increased airway reactivity in asthmatics at 0.25 0.3 ppm for 30 min- 1 hr

Basis for NO₂ 1-hour Standard (con't)

- 3. Add margin of safety for:
 - Children and other susceptible populations (e.g. more severe asthmatics)
 - Possible effects at lower concentrations
 - Proposing 1-hr avg standard but effects observed after 15-30 minutes
- 4. Effects observed in epidemiologic time-series and panel studies may be due to short-term exposures

Basis for Annual Average Standard of 0.030 ppm

- Hospital admissions and ER visits for asthma, and effects on lung development and asthma exacerbation in areas with annual averages of 0.025 to 0.040 ppm
- 2. Potential effects of NO₂ on serious outcomes including mortality, ER, hospitalization for cardiac and respiratory disease and arrythmias
- 3. NO₂ likely to be best marker of traffic among criteria pollutants

Basis for Annual Average (con't)

- 4. Studies show airway reactivity and enhancement of allergic response and alterations in lung structure in young animals due to long term exposures
- Important to lower full distribution of exposures not just peak 1-hr

SB 25 Requires Special Considerations for Infants and Children

- Exposure patterns: higher exposures per body weight and more time spent outdoors
- Susceptibility: exposure may impact lung development and function
- Pollutant interactions: little evidence at this point

Summary Staff Recommendations for Nitrogen Dioxide

- Retain Nitrogen Dioxide as the pollutant definition
- Reduce the current 1-hr standard to 0.18 ppm, not to be exceeded
- Establish a new annual average of 0.030 ppm, not to be exceeded
- Retain the chemiluminescence monitoring method

Review of the California Ambient Air Quality Standard for Nitrogen Dioxide

February 22, 2007

Board Hearing

Sacramento, California

